The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

نویسندگان

  • Qinghua Wu
  • Ning Meng
  • Yanru Zhang
  • Lei Han
  • Le Su
  • Jing Zhao
  • Shangli Zhang
  • Yun Zhang
  • Baoxiang Zhao
  • Junying Miao
چکیده

Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stem Cell Bone Differentiation on Polyol Lactic Acid Composite Nanoparticles Containing 45S5 Bioactive Glass Nanoparticles

Abstract Background and Objectives Now day, using of stem cells and nanoparticles in the differentiation of stem cells is considered as a therapeutic approach. The purpose of this study was to synthesize and characterize nanocomposite polyacrylic polycarboxylic acid containing nanoparticles of biologically active glass 45S5 crushed and assessment effect of this composite on the propagation and...

متن کامل

Magneto-mechanical Stimulation of Bone Marrow Mesenchymal Stromal Cells for Chondrogenic Differentiation Studies

Mechanical interaction of cells and their surroundings are prominent in mechanically active tissues such as cartilage. Chondrocytes regulate their growth, matrix synthesis, metabolism, and differentiation in response to mechanical loadings. Cells sense and respond to applied physical forces through mechanosensors such as integrin receptors. Herein, we examine the role of mechanical stimulation ...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

A New Multistep Induction Protocol for the Transdifferentiation of Bone marrow Stromal Stem Cells into GABAergic Neuron-Like Cells

Background: Bone marrow stromal stem cells (BMSC) are appropriate source of multipotent stem cells that are ideally suited for use in various cell-based therapies. It can be differentiated into neuronal-like cells under appropriate conditions. This study examined the effectiveness of co-stimulation of creatine and retinoic acid in increasing the differentiation of BMSC into GABAergic neuron-lik...

متن کامل

Review of Effect of Storage Time before Freezing on Stem Cells Surveillance, Collected from Cord Blood, Peripheral Blood and Bone Marrow

Introduction: The use of cord stem cells, as a cell source for bone marrow reconstruction in patient under hematopoietic stem cell transplantation is enhancing. The amount of CD34+cells collected from cord blood compared to peripheral blood and bone marrow are less, but their collectionprocesure is easier. Delay in freezing has negative effect on cells surveillance and reduce their ability in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014